# **Kinetics - Mark Scheme**

# Q1.

| Question<br>number | Answer                                                    | Mark |
|--------------------|-----------------------------------------------------------|------|
|                    | D proportion of particles with sufficient energy to react | 1    |

# Q2.

| Question<br>number | Answer                                                                                                                                                                     | Additional guidance                    | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|
| (a)                | <ul> <li>2H<sub>2</sub>O<sub>2</sub> → 2H<sub>2</sub>O + O<sub>2</sub> (1</li> <li>iodide ions act as a catalyst (as they don't appear in the overall equation)</li> </ul> | Ignore state symbols even if incorrect | 2    |

| Question<br>number | Answer                                           | Additional guidance                                                                                                         | Mark |
|--------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------|
| (b)                | converts both temperatures from °C to K     (1)  | Example of calculation:<br>22.0°C = 295.0 K<br>47.0°C = 320.0 K                                                             | 4    |
|                    | correct subtraction (1)                          | $\ln\left(\frac{K_1}{K_2}\right) = -\frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$                                |      |
|                    | substitute numbers in equation correctly     (1) | $\ln\left(\frac{4.90\times10^{-4}}{1.07\times10^{-3}}\right) = -\frac{E_s}{8.31}\left(\frac{1}{295} - \frac{1}{320}\right)$ |      |
|                    | • correct value of $E_a$ (1)                     | Sign and final answer to<br>2 or 3 SF<br>Incorrect units loses MP4                                                          |      |
|                    |                                                  | Correct answer with no working scores 4                                                                                     |      |

| Question<br>number | Answer                                                                                 | Additional guidance | Mark |
|--------------------|----------------------------------------------------------------------------------------|---------------------|------|
| (c)(i)             | An explanation that makes reference to the following points:                           |                     | 3    |
|                    | (blue-black colour is) product of starch-iodine reaction                               | )                   |      |
|                    | the iodine produced reacts (rapidly) with the thiosulfate ions (to reform iodide ions) |                     |      |
|                    | when all of the thiosulfate has reacted, the blue-black colour appears.                | )                   |      |

| Question<br>number | Answer                                                              | Additional guidance                    | Mark |
|--------------------|---------------------------------------------------------------------|----------------------------------------|------|
| (c)(ii)            | the reaction (between thiosulfate and<br>hydrogen peroxide) is slow | Allow reaction has high E <sub>a</sub> | 1    |

# Q3.

| Question<br>number | Answer                          | Mark |
|--------------------|---------------------------------|------|
|                    | D titration of quenched samples | 1    |

# Q4.

| Question<br>number | Answer          | Mark |
|--------------------|-----------------|------|
|                    | A dm³ mol⁻¹ s⁻¹ | 1    |